

3. PLANNING OF POWER SYSTEM RESERVES

Asko Vuorinen 10.3.2016 Aalto University

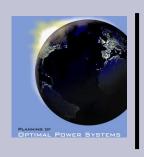
Reliability terms

Reliability terms

Forced outage rate (FOR)

FOR = FOH/(FOH+SH)x100 %

FOH = forced outage hours


SH = service hours

Reliability terms, continued

Equivalent forced outage rate (EFOR)

EFDH = equivalent forced derated hours (output reductions + forced hours)

Reliability terms, continued

Equivalent forced outage rate demand

$$f x FOH + f_p x EFDH$$

$$EFORd = ----- x 100 \%$$

$$SH + f x FOH$$

f = (1/r + 1/T)/(1/r+1/T+1/D)

 $f_p = SH/AH$

AH= available hours

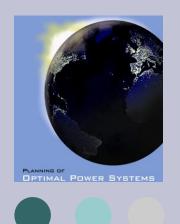
r = averge forced outage duration = FOH/number of forced outages

T = average times between calls of unit to run

D = average run time = SH/number of successful starts

Reliability terms, continued

Starting reliability (SR)



US Statistics (1999-2003)*

EFORd

SR

Conventional plants	6.2%	98.4%
 Coal-fired plants 	6.4%	97.4%
 Oil-fired plants 	5.7%	99.4%
 Gas-fired plants 	5.9%	99.2%
Nuclear plants	5.4%	98.5%
Hydro plants	3.6%	99.5%
Combined cycles	5.6%	97.6%
Gas turbines (GT)	7.5%	95.5%
Aero-derivative GT	6.8%	97.2%
Diesel engines	5.4%	99.4%

Reliability of power system

Probability that exactly m of n units are in operation

$$n!$$
 $P(M=m|n, R) = ----- R^m (1-R)^{n-m}$
 $m! (n-m)!$

n = number of units in the system

 $n! = 1 \times 2 \times 3 \times ... \times n$

m = number of units in operation

 $m!= 1 \times 2 \times 3 \times ... \times m$

R = reliability of an unit = 1 - EFORd

Probability that at least m of n units are in operation

$$n!$$

$$P(M=m|n, R) = \sum ----- R^{m}(1-R)^{n-m}$$

$$m! (n-m)!$$

n = number of units in the system

 $n! = 1 \times 2 \times 3 \times ... \times n$

m = number of units in operation

 $m!= 1 \times 2 \times 3 \times ... \times m$

R = reliability = 1 - EFORd

SYSTEM RELIABILITY R = 95 % (EFORd = 5 %)

n	1	2	3	4	5	10	20	50	100
n	95,0000	90,2500	85,7375	81,4506	77,3781	59,8737	35,8486	7,6945	0,5921
n-1		99,2750	99,2750	98,5981	97,7408	91,3862	73,5840	27,9432	3,7081
n-2			99,9875	99,9519	99,8842	98,8496	92,4516	54,0533	11,8263
n-3				99,9994	99,9970	99,8972	98,4098	76,0408	25,7839
n-4						99,9936	99,7426	89,6383	43,5981
n-5						99,9997	99,9671	96,2224	61,5999
n-6							99,9966	98,8214	76,6014
n-8							99,9997	99,6812	87,2040
n-9								99,9244	93,6910
n-10								99,9970	97,1812
n-11								99,9995	99,5726
n-12									99,8536

Normal utility system* Reliability target (Rs = 99.9 %)

System	Reserve need
3 x 100 %	200 %
4 x 50 %	100 %
5 x 33 %	67 %
13 x 10 %	30 %
25 x 5 %	25 %
113 x 1 %	13 %

^{*}Unit reliability = 95 %

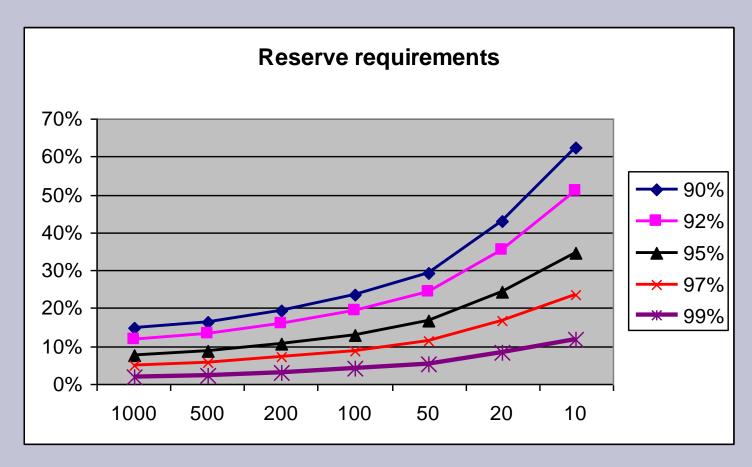
Modern utility system* Reliability target Rs = 99.99 %

System	Reserve need
4 x 100 %	300 %
5 x 50 %	150 %
14 x 10 %	40 %
26 x 5 %	30 %
115 x 1 %	15 %

^{*}Unit reliability = 95 %

Reserve margin (RM)

R = reliability of unit


Z = level of confidence

Sigma = standard deviation of reliability

n = number of units in the system

Reserve requirements at three sigma level (Rs = 99.7 %)

General

Utility system needs less reserves, if the number of units (n) will grow and if the reliability of units (R) increases

System with 100 units needs 10 – 20 % reserves when the reliability of units varies from 92 to 97 %

Reserve requirements with one large and several small units

Simplified formula

$$RR = \sum ((1-R) \times Pui) + P_{max}$$

Where

RR = reserve requirement

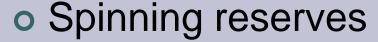
P_{max}= largest unit in the system

R = reliability of the other units

Pui = output of unit i

Reserve requirements with one large and several small units

If the largest unit is 10 % of system size and the unreliability of other units is 5 %, then


Optimal reliability targets

National power system = 99.9 %
Interconnected system = 99.99%
Safety related power system = 99.9999%*

^{*} Can be planned by adding standby diesel engines, which start within one minute, when the interconnnected system fails (see slide 12 for configurations)

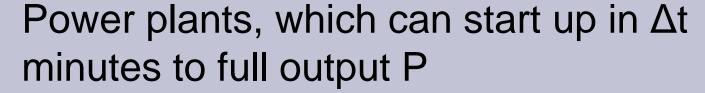
OPERATING RESERVES

- Synchronised reserves
- Non-spinning reserve
 - Unsynchronised reserves
- Supplemental reserves
 - 30 60 minute reserves
- Slow reserves
 - 1 12 hours reserves

Spinning reserves

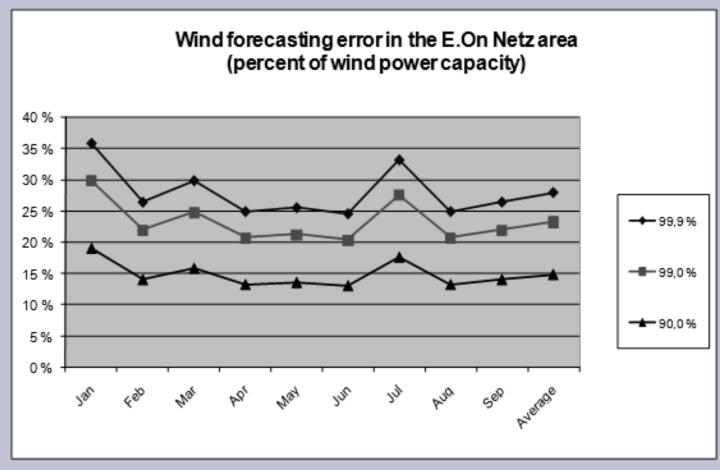
 Spinning reserves = rotating reserves act immediately by the rotating mass of the generator

 If the frequency starts dropping, the genertor intertia tends to resist the slowing down motion



Spinning reserve by Combustion Engines

- Operating power plants which can change their output by ΔP in Δt
 - -Ten minute spinning reserves in USA $(\Delta t = 10 \text{ min})$
- CEs change their output from 40 % to 100 % in ten minutes


Non-spinning reserves

- -Ten minute non-spinning reserves in USA (Δt = 10 min)
- -Fast reserves in UK ($\Delta t = 5$ min) and Nordel ($\Delta t = 15$ min)



Wind power forecasting errors and need for reserves

How to compensate 800 MW drop of wind power?

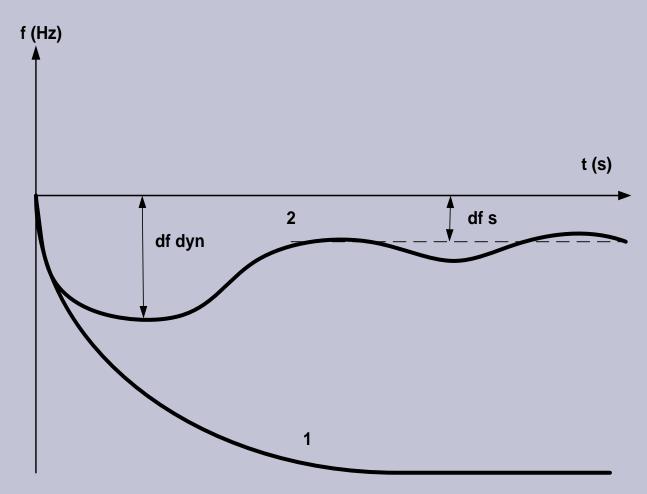
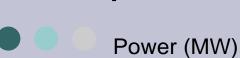
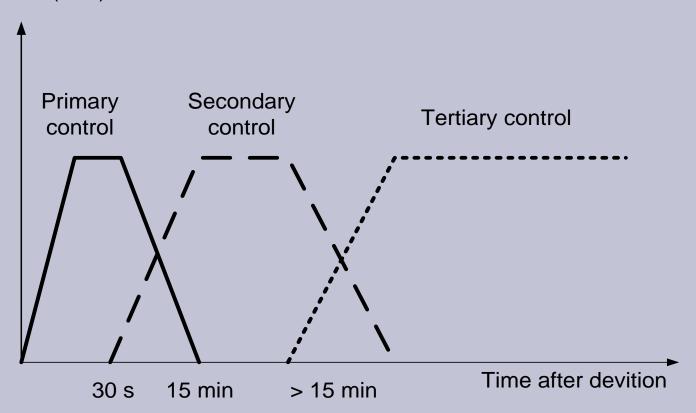

220 MW Plains End Plant in Colorado (2001 20 x 5,5 MW+2005 12 x 8 MW)

Bild to compensate 1000 MW wind power variations




How to compesate a trip of 1600 MW nuclear plant?

A trip of a 1600 MW nuclear plant

Fast Actions Needed

Primary control

Spinning reserves should act within 30 seconds

Seconadry control

Non-spinning and spinning reserves should restore spinning reserves within 15 minutes

Tertiary control

Supplementary reserves should restore secondary control within 30 to 60 minutes

Secondary Control

$dP = -K \times ACE - 1/Tr \int ACE dt *$

where

dP = output set point of secondary controller

K = gain of P - controller

ACE = Area Control Error

Tr = time constant of secondary controller

* Note: The control action dP increases by integral formula, if the deviation of ACE remains constant (PI-type controller)

ACE = Area Control Error

$ACE = dB + K \times df$

Where

dB = deviation in power balance (= Generation-

Load + Import - Export)

 $df = deviation of frequency from (f_N)$

K = dependency between deviation of

power and system frequency

Note: ACE is calculated in ten second intervals by computers in the dispatch center in USA

If ACE > given limit, penalties will be given to utilities

250 MW non-spinning reserve plant Kiisa, Estonia

Black-start diesel generators

Emergency Diesel Generators (EDG)

Station Blackout Diesel Generators (SBO)

Starting reliability (SR=97 %)

n	1	2	3	4	5	6	7	8	100
n	97,0000	94,0900	91,2673	88,5293	85,8734	73,7424	54,3794	21,8065	4,7553
n-1		99,7354	99,7354	99,4814	99,1528	96,5493	88,0162	55,5280	19,4622
n-2			99,9973	99,9894	99,9742	99,7235	97,8992	81,0798	41,9775
n-3				99,9999	99,9996	99,9853	99,7331	93,7240	64,7249
n-4						99,9995	99,9980	98,3189	81,7855
n-5							99,9999	99,6264	91,9163
n-6								99,9296	96,8772
n-8								99,9886	98,9376
n-9								99,9984	99,6784
n-10								99,9998	99,9126
n-11									99,9785
n-12									99,9952

Emergency Diesel Generators (EDG) in Nuclear Plants

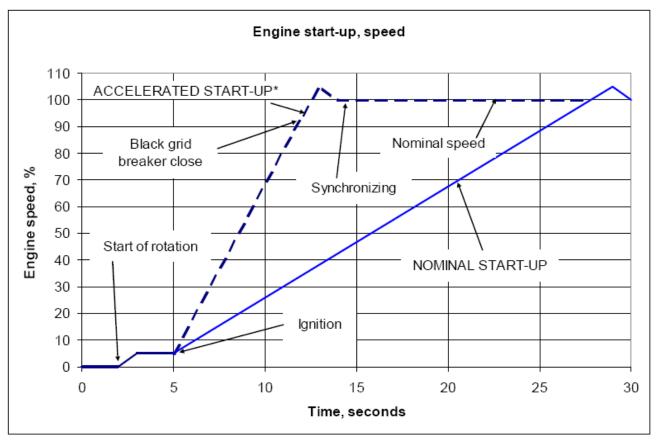
Single Diesel Generator

 $1 \times 100 \%$, R > 0.9700

American nuclear plants

 $2 \times 100 \%$, R > 0.9974

Finnish and German Nuclear plants


 $4 \times 50 \%$, R > 0.9989

One of four will start with probability

4 x 100 % R>0.999999

EDG Start-up time

- * Accelerated start-up criteria:
 - engine must be pre-heated
 - visible smoke may occur
 - not possible with engine driven fuel pump
 - start air pressure must be a minimum of 28 bar

Loviisa 10 MW SBO/Fast Reserve Diesel plant

Need for Diesel Generators and Fast Reserves

Emergency Diesel (EDG) 4 x (3 – 8 MW)

Swing Diesels (SDE) $1 \times (3 - 8 \text{ MW})$

Station Blackout (SBO) 1-2 x (1 – 10 MW)

Fast reserve capacity 1,18 x largest unit

 $1,18 \times 1700 \text{ MW} = 2000 \text{ MW}$

in Finland

Investment costs

Reserve diesel generator plant 600-700 €/kW

Gas engine CHP plant

700-800 €/kW

EDG plant

1000 -2000 €/kW

Coal or peat CHP plant

1000-1500 €/kW

Wind power park

1000-1500 €/kW

Nuclear plant

4000-6000 €/kW

SUMMARY

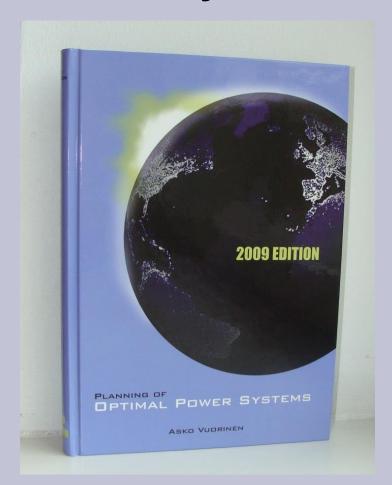
- Reserve needs become lower by planning systems with smaller and more reliable units
- Largest unit determines the need of reserve capacity, if the unit sizes are unevenly distributed
- The modern electronic age requires higher system reliability figures because everything depends on computers

For details see reference text book "Planning of Optimal Power Systems"

Author:

Asko Vuorinen

Publisher:


Ekoenergo Oy

Printed:

2008 in Finland

Further details:

www.ekoenergo.fi

