

1. FUNDAMENTALS OF POWER PLANTS

Asko Vuorinen

Engine cycles

- Carnot Cycle
- Otto Cycle
- Diesel Cycle
- Brayton Cycle
- Rankine Cycle
- Combined Cycles

Carnot Engine

Carnot Cycle

T-S Diagram

P-V Diagram

Carnot Cycle, continued

- Ideal gas cycle, discovered by French engineer Sadi Carnot in 1824
- Heat is added at constant temperature
 T₁
- Heat is discharged at constant temperature T₂

Carnot Cycle, continued

Efficiency

$$\eta = 1 - T_2/T_1$$

The work done is area W in diagram

Higher the T₁ and lower T₂ more work can be done by the Carnot engine

Otto Cycle

T-S Diagram

Otto Cycle, continued

- Nicolaus Otto discoverd spark ignition (SI) four stroke gas engine 1876
- Heat is added in constant volume V₁ at top dead center (TDC) by igniting gas air mixture by spark
- Heat is discharged at constant volume
 V₂ at botton dead center (BDC)

Otto Cycle, continued

Efficiency of Otto Engine

$$\eta = 1 - 1/r^{k-1}$$

where

 $r = compression ratio = V_2/V_1$

k= gas constant

Otto Cycle, continued

- Spark ignition (SI) engines are most built engines in the world
- About 40 million engines/a for cars (2000 GW/a)
- About 4000 engines/a for power plants (4 GW/a)

Diesel Cycle

 S_1

T-S Diagram

 S_2

Diesel Cycle, continued

- Rudolf Diesel outlined Diesel engine in 1892 in his patent
- Heat is added at constant pressure and discharged at constant volume
- Ignition happens by self ignition by injecting fuel at top dead center
- Some call Diesel engines as compression ignion (CI) engines

Diesel Cycle, continued

Efficiency $\eta = 1 - 1 / r^{k-1} (r_c^k - 1) / (k(r_c-1))$ where $r = comperssion ratio = V_2/V_1$ rc = cut off ratio = V_3/V_2 note If r is the same, Diesel cycle has lower efficiency than Otto cycle

Diesel Cycle, continued

- Diesel engines are most built energy conversion machines after SI-engines
- Car industry builds about 20 million/a diesel cars and trucks (1400 GW/a)
- Ship industry about 30 GW/a (>0,5 MW unit size)
- Power plant orders are 40 GW/a (>0,5
 MWe unit size, 20 % market share)

Brayton Cycle

T-S Diagram

Brayton Cycle

Brayton Cycle

- Developed by Georg Brayton (1832 -1890)
- Heat is added and discharged at constant pressure
- Applied in Gas Turbines (GT) (Combustion Turbines in US)

Brayton Cycle, continued

Efficiency

$$\eta = 1 - 1/r_p^{(k-1)/k}$$

where

 r_p = compressor pressure ratio = p_2/p_1 k = gas constant

Brayton cycle, continued

- Gas turbines are number third power conversion machines after SI- and CIengines
- > 90 % market share in large airplanes
- Power plant orders are 30 GW/a (15 % market share)

Rankine Cycle

T-S Diagram

Rankine Cycle, continued

Rankine Cycle, continued

- Scottish engineer William Rankine (1820-1872) developed a theory of steam cycles
- Heat is added in a water boiler, where the water becomes steam
- Steam is fed to a steam turbine, which generates mechanical energy
- After turbine the steam becomes water again in a condenser

Rankine cycle, continued

- The efficiency varies from 20 % in small subcritical steam turbines to 45% in large double reaheat supercritical steam turbines
- The rankine cycle is ideal for solid fuel (coal, wood) power plants

Rankine cycle, continued

- Steam turbines are most sold machines for power plants as measured in output (100 GW/a)
- They are used in coal fired, nuclear and combined cycle power plants
- Coal and nuclear plants generate about 50 % of world electricity

Gas turbine combined cycle

GAS TURBINE COMBINED CYCLE

Gas Turbine Combined Cycle

- Combines a gas turbine (Brayton cycle) and steam turbine (Rankine Cycle)
- About 66 % of power is generated in gas turbine and 34 % in steam turbine
- Efficiency of GTCC plant is typically 1.5 times the efficiency of the single cycle gas turbine plant

IC Engine Combined Cycle

IC-ENGINE COMBINED CYCLE

IC Engine Combined Cycle

- Combines a Internal combustion Engine (Diesel or Otto cycle) and steam turbine (Rankine Cycle)
- About 90 % of power is generated in gas turbine and 10 % in steam turbine
- Efficiency of GTCC plant is typically 1.1 times the efficiency of the single cycle IC engine plant

Electrical efficiency

Efficiency $\eta = (P - P_{aux})/Q \times K_t \times K_l$

where

P = electrical output

P_{aux} = auxiliary power consumption

Q = heat output

K_t = temperature correction factor

 K_1 = part load correction factor

Electrical efficiency

Efficiency correction factor for ambient temperature

Efficiency correction factor for part load operation

Classification of power plants by place of combustion

- Internal combustion engines
 - Diesel engines
 - Gas engines
 - Dual-fuel engines
- External combustion engines
 - Steam engines
 - Stirling engines
 - Gas turbines
 - Steam turbines

Classification of internal combustion engines

- By speed or rotation
 - Low speed < 300 r/min (ship engines)
 - Medium speed 300 1000 r/min (power plants)
 - High speed > 1000 r/min (Standby power plants and cars)
- By number of strokes
 - 2 stroke (large ships)
 - 4 stroke (power plants and cars)

Classification of internal combustion engines, continued

- By type of combustion
 - Lean burn (lambda > 1.2 -2.2)
 - Stoichiometric (lambda = 1)
- By combustion chamber
 - Open chamber
 - Pre-chamber

Classification of internal combustion engines, continued

By fuel

- Heavy fuel oil (HFO)
- Light fuel oil (LFO)
- Liquid bio fuel (LBF)
- Natural gas (NG)
- Dual-fuel (NG/LFO)
- Tri-fuel (NG/LFO/HFO)
- Multi-fuel (NG/LFO/HFO/LBF)

Classification of gas turbines

- By type
 - Industrial (single shaft)
 - Aeroderivative (two shaft)
 - Microturbines (50 200 kW)
- By fuel
 - Light fuel oil (LFO)
 - Natural gas (NG)
 - Dual-fuel (NG/LFO)

Classification of steam turbine power plants

- By steam parameters
 - Subcritical (400 540 °C, 10 -150 bar)
 - Supercritical (600 °C, 240 bar)
- By fuel
 - Coal, lignite, biomass
 - Heavy fuel oil (HFO)
 - Dual-fuel (gas/HFO)

Classification of nuclear power plants

- By type of nuclear reaction
 - Fission (splitting U₂₃₅ atoms)
 - Fusion (fusion of deuterium and tritium)
- By energy of neutrons in chain reaction
 - Fast reactors (fast neutrons)
 - Thermal reactors (slow neutrons)

Classification of thermal reactors

- By moderator (slow down of neutrons)
 - Water
 - Graphite
- By cooling media
 - Water
 - Helium

Classification of water cooled reactors

Pressurised water

Toshiba (Westinghouse), Mitsubishi (Japan),
 Areva (France), Rosatom (Russia), KHNPC (South-Korea), Chines companies

Boiling water

- General Electric (USA)
- Hitachi/Toshiba (Japan), Kerena (Areva)

Heavy water

AECL (Canada)

Wind turbines

$$E = \eta \times \rho \times A \times V^3$$

where $\eta = efficiency$

 ρ = density of air

A = area of rotor = $2 \times \pi \times r^2$

r = radius of rotor

v = wind velocity

Wind turbine output

Wind speed (m/s)

Wind follows the isobars and increases in coastal areas

The Future Comes with the Wind and Solar Electricity

Growth Figures: Wind 28 %/a, Solar 65%/a

Operating parameters

- Start-up time (minute)
- Maximum step change (%/5-30 s)
- Ramp rate (change in minute)
- Emissions

Start-up time

			lengines			
	1)	ΙΔΟΔΙ	Δ n		nac	
U		ロンマコ	CII	IUI	1100	

Gas engines

Aeroderivative GT

Industrial GT

GT Combined Cycle

Steam turbine plants

0,1 - 5 min

5 - 10 min

5 - 10 min

10 - 20 min

30 - 60 min

60 - 600 min

Large plants need longer start-up time

Maximum change in 30 s

 Diesel engines 	60 - 100%
Gas engines	20 - 30 %
 Aeroderivative GT 	20 - 30 %
Industrial GT	20 - 30 %
 GT Combined Cycle 	10 - 20 %
 Steam turbine plants 	5 - 10 %
 Nuclear plant 	5 - 10 %

Maximum ramp rate

Gas engines

Aeroderivative GT

Industrial GT

GT Combined Cycle

Steam turbine plants

Nuclear plants

40 %/min

20 %/min

20 %/min

20 %/min

5 -10 %/min

1-5 %/min

1-5 %/min

CO2-emissions

Summary Annual orders:

1 Otto cycle

2 Diesel cycle

3 Brayton cycle

Power plants

1 Rankine Cycle

2 Diesel Cycle

3 Brayton Cycle

3 Wind turbines

5 Hydro turbines

3500 GW

2000 GW

1500 GW

20 GW

200 GW

80 GW

40 GW

30 GW

30 GW

20 GW

Summary

 You should know the alternatives before start to plan the optimal power systems

For details see reference text book "Planning of Optimal Power Systems"

Author:

Asko Vuorinen

Publisher:

Ekoenergo Oy

Printed:

2008 in Finland

Orders:

