



# 7. FREQUENCY CONTROL AND REGULATING RESERVES

Asko Vuorinen



## Purpose of frequency control and regulating reserves

- Keep the balance between demand and supply of electricity
- Balance is measured with frequecy of system



## Power system differenetial equation

dWk/dt= Pg - Pc

#### where

Wk = kinetic energy of all rotating machines =  $\frac{1}{2}$  J  $\omega^2$ 

Pg = power generation

Pc = power consumption

J = torque of machines

 $\omega$  = angular speed (rad/s)

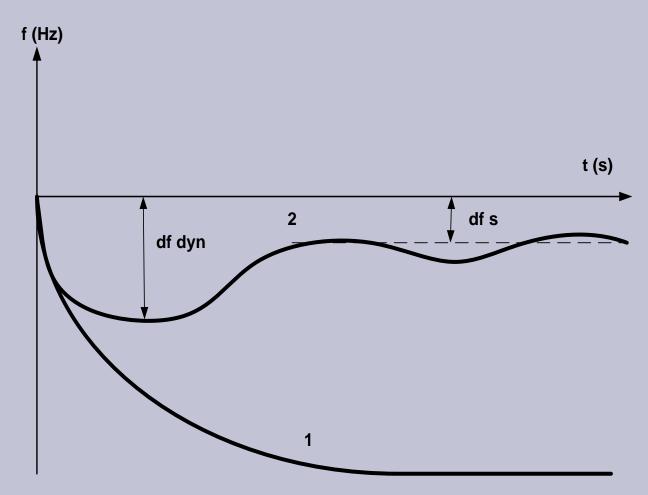


## Frequency drop without regulation

$$df = dPg/Kn (1 - e^{-fNKn/(2Wk) \times t})$$

#### where

2Wk/(fNKn) = time constant (T) (5 - 10 s)


Kn = natural control gain of the network (Hz/MW)

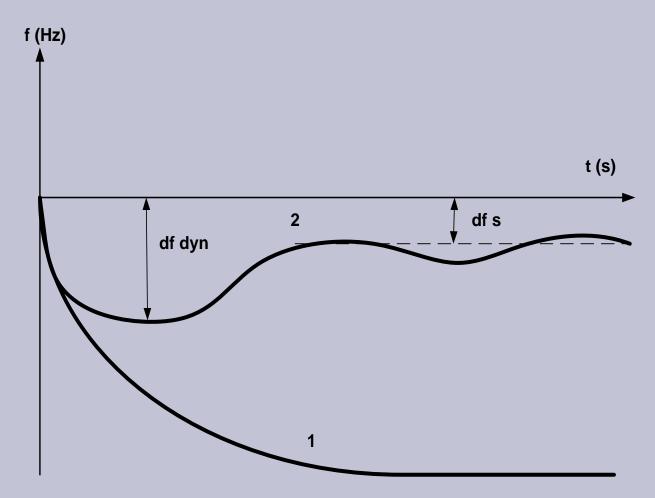
1/Kn = self regulation power (typically 1-2 % of total capacity)



### Deficit causes a frequency drop

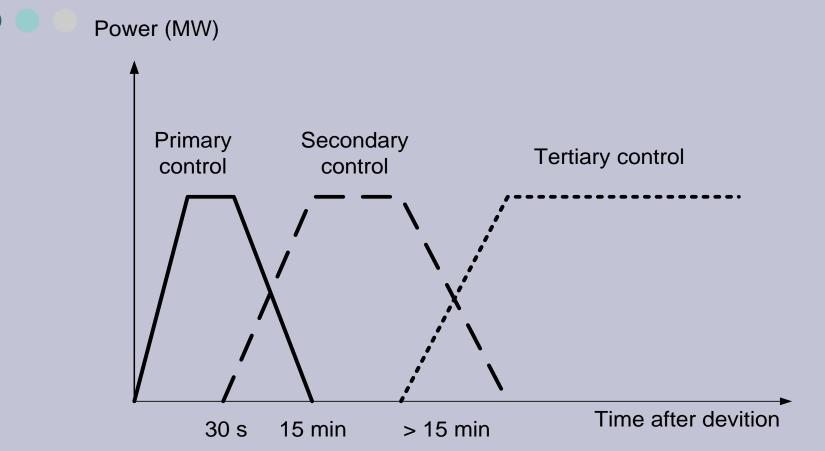
without regulation (line 1) and with regulation (line 2)





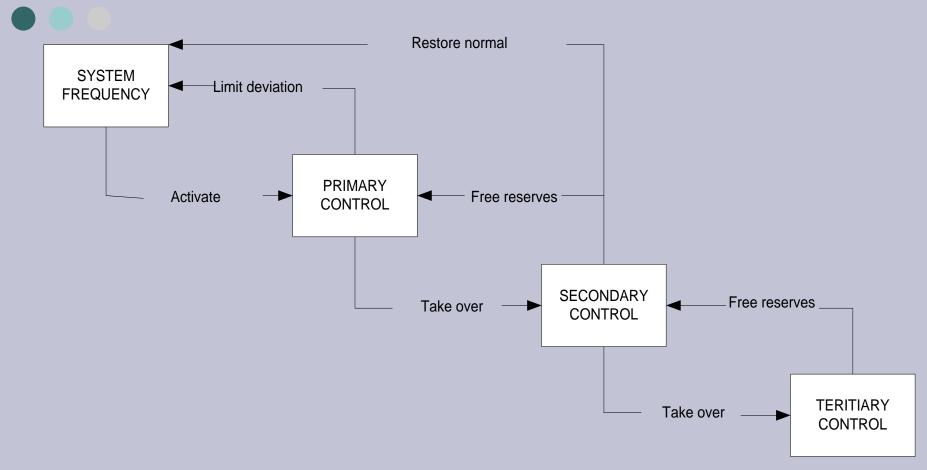

### Without regulation

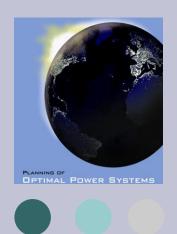
- Loss of 10 % of generation causes a frequency drop by 3 – 5 Hz within a minute
- The maximum allowed deviation is typically 0.1 – 0.2 Hz (dfs), thus regualtion is needed




## Regulation reserves limit the frequency deviation to dfs







## Classification of regulating reserves (UCTE)\*





## Sequence of actions of primary, secondary and tertiary control





### Primary control reserves



### Primary control reserves

Actions taken within 5 – 30 seconds by generator droop control

Generators measure the frequency and immediately change the output according the formula:

$$dP = - Pgn/s_G/f_n \times df$$

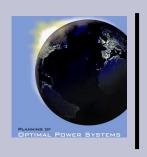


### Primary control, continued

$$dP = - Pgn/s_G/f_n \times df = - Rp \times df$$

#### where

dP = change in generator output (MW)

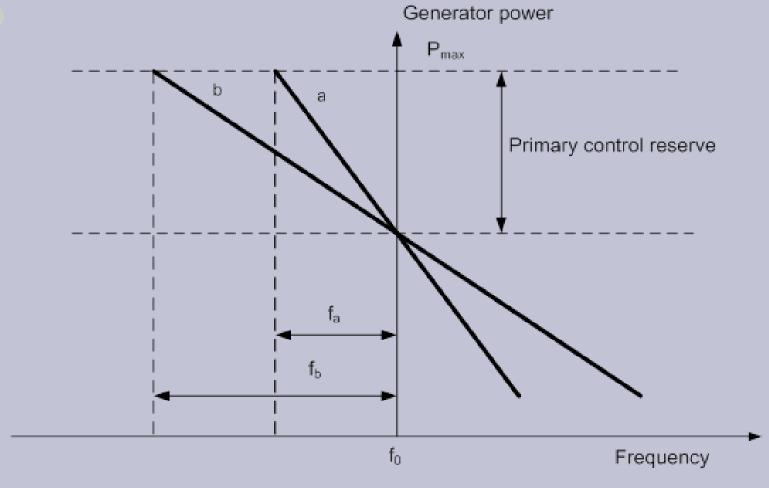

Pgn = nominal output of generator (MW)

 $s_G$  = generator droop (%)

fn = nomnal frequency

df = change in power system frequency

 $Rp = regulating power = - Pgn/S_G/f_n$ 




### Primary control, continued

- If the frequency deviation is eleminated the output becomes the same as it was before the disturbance (system is then restored)
- The primary control is Proportional control (P-control), where the output change (dP) is directly proportional to frequency deviation (df)



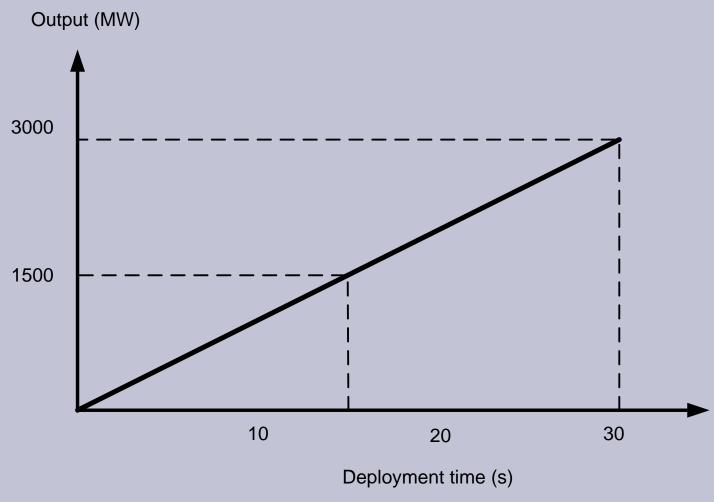
### Primary control, continued Two generators (a and b) with different droop

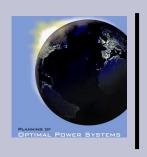




## Two generators (a and b) with different droop

Generator b needs much larger deviation in frequency  $(f_b)$  than generator a  $(f_a)$  to change the output by the same relative amount (Primary control reserve)





### Need of primary control reserves

- UCTE 3000 MW (Continental Europe)
  - 3000 MW or equivalent of two 1500 MW nuclear plants or lines trip at the same time
- Eastern Interconnection (USA)
  - 3000 MW = largest interconnection
- NORDEL (North Europe)
  - Continuous control = 600 MW/0.1 Hz
  - Frequency response = 1000 MW, if frequency drop to 49,5 – 49,9 Hz



## Primary control reserve deployment time (UCTE)





## Primary control reserve deployment time

#### UCTE

- 1500 MW in 15 s
- 3000 MW in 30 s

#### Nordel

- 300 MW in 5 s
- 1200 MW in 30 s

<sup>\*</sup> Note: the first 5 seconds are critical (see slide 7)



## Secondary control reserves (regulating reserves in USA)



### Secondary control reserves Functions

- Should reset the primary control reserves in 5 – 15 minutes to be ready for next disturbance
- Should correct the frequency deviation within allowable limit
  - +/- 0.1 Hz in Nordel
  - +/- 0.2 Hz in UCTE



### Secondary control reserves Control formula

 $dP = -K \times ACE - 1/Tr \int ACE dt *$ 

#### where

dP = output set point of secondary controller

K = gain of P - controller

ACE = Area Control Error

Tr = time constant of secondary controller

\* Note: The control action dP increases by integral formula, if the deviation of ACE remains constant (PI-type controller)

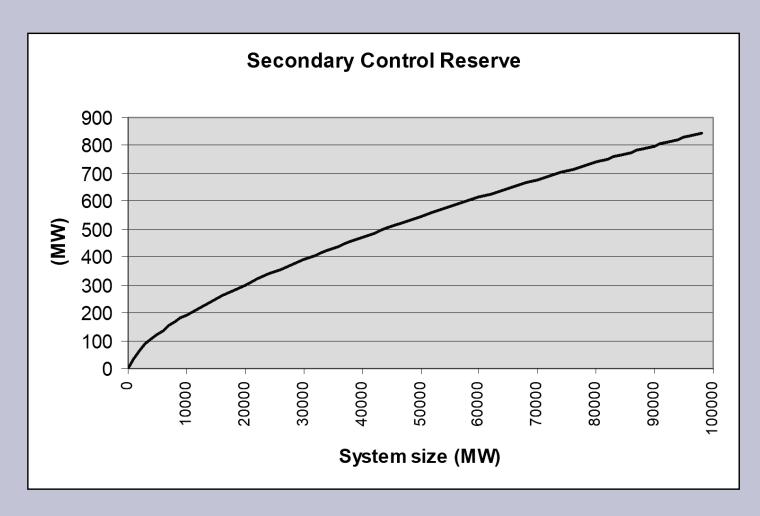


### Secondary control reserves Area Control Error (ACE)

#### $ACE = dB + K \times df$

#### Where

dB = deviation in power balance (= Generation-Load + Import - Export)


df = deviation of frequency from (f<sub>N</sub>)

K = dependency between deviation of power and system frequency

Note: ACE is calculated in about five to ten second intervals by computers in the dispatch center



### Secondary control reserves Reserve requirements (UCTE)





### Secondary control reserves Reserve requirements

- UCTE (Continental Europe)
  - 3000 MW system 100 MW = 3 %
  - 10000 MW system 200 MW= 2 %
  - 60000 MW system 600 MW= 1 %
- PJM (USA)
  - Forecasted day peak load 1.1 %
  - Forecasted night peak load 1.1 %
- Nordel (North-Europe)
  - No specific requirement given



## Secondary control reserves Automatic Generation Control (AGC) and manual control

- AGC (USA and UCTE)
  - Dispatch center computers measure ACE and send setpoints for regulating power plants automatically
- Manual (Nordel)
  - Dispatch center operators call to regulating power plants by phone and ask to change the set points



### Secondary control reserves Response times

- o 5 min
  - PJM (USA)
  - Germany
- 10 min
  - Nordel
  - California (USA)



## Secondary control reserves Compliance factor (USA)

 $CF = ACE/(-10B) \times df$ 

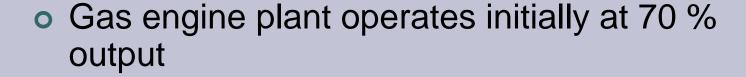
#### Where

CF = compliance factor

ACE = Area Control Error (slide 22)

10B = bias setting of control area (MW/Hz)

df = frequency deviation



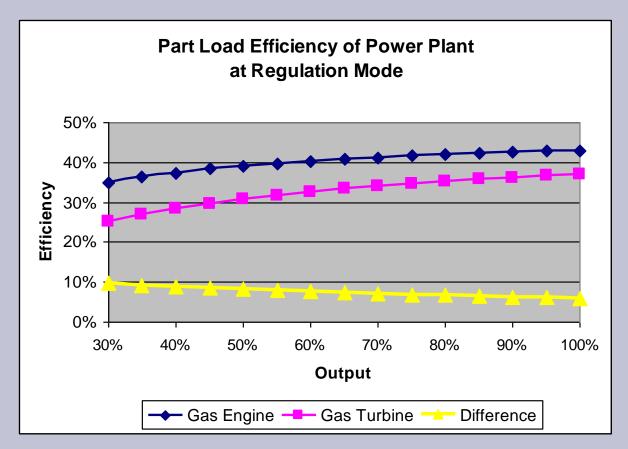

## Secondary control reserves Compliance factor (USA)

- Compaliance factor is measured in each ten minute periods for monthly statistics
- If 90 % of compliance factors during a month are better then required, then everything is OK
- If not, regulators may demand more new reserves or faster response times from existing regulation reserves



### Secondary control reserves Power plant actions




 It can then change its output +/- 30 % in five minutes

Ramp rate = 30 %/5 min = 6 %/min\*

<sup>\*</sup>See futher details of ramp rates of various power plants in presentation Fundamentals of power plants



## Secondary control reserves Part load efficiency is important




Efficiency at 70 % load: GE 41 % and GT 34 %



### Secondary control reserves

Part load efficiency of 80 MW gas engine plant\*



<sup>\*</sup> At high Efficiency Mode engines are started one by one At Regulation Mode all engines run at same output



## Secondary control reserves Summary

- Secondary control systems correct the frequency deviation using PI-type regulation
- Regulation can be made automatically by AGC or mannually by the operator
- The power plants which have highest part load efficiency can deliver reguation with the lowest costs



## Tertiary control reserves Balance control

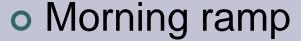


### Tertiary control reserves Balance control

- Tertiary control is a responsibility of each Load Serving Entity (LSE)
- LSE should balance its load, generation, sales and purchases in each balancing interval
- Balancing interval varies from 15 minutes to 60 minutes depending on the country



### Tertiary control reserves


#### Balance control



- Use selfgeneration for balance control
- By balance difference from balance provider
- Pay penalties to System Operator
- LSE:s prefer
  - Power plants which can be used in balance control and regulation



### Critical situations



 All resources are needed to increase power from 50 % to 100 % within two hours

#### Television pickup

Olympic games or other sport
 happenings can increase load by 10 20 % in some minutes



### Summary

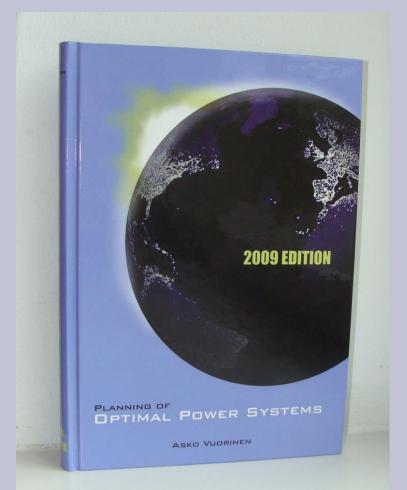
- Transmission system operator (TSO) uses frequency control and regulation to keep the electricity power balance in control from seconds to one hour
- Load Service Entities (LSE) try the keep the their balance by flexible power plants within one hour and sell regulation services to TSO



### For details see reference text book "Planning of Optimal Power Systems"

Author:

**Asko Vuorinen** 


Publisher:

**Ekoenergo Oy** 

Printed:

2008 in Finland

Orders click:

