

8. OPERATING, REACTIVE AND BLACK START RESERVES

Asko Vuorinen

Operating reserves

Purpose of operating reserves

Classification of operating reserves

- Spinning reserves
 - Synchronised reserves
- Non-spinning reserve
 - Unsynchronised reserves
- Supplemental reserves
 - 30 60 minute reserves
- Slow reserves
 - 1 12 hours reserves

Spinning reserves

- Operating power plants which can change their output by ΔP in Δt
 - Called as ten minute spinning reserves in USA (Δt =10 min)

Spinning reserve Generation

- By internal combustion engine or gas turbine plants
- Can change their output from 40 % to 100 % in ten minutes

Spinning reserves Continued

 If the frequency starts dropping, the genertor intertia tends to resist the slowing down motion

Non-spinning reserves

- Called as ten minute non-spinning reserves in USA (Δt= 10 min)
- Called as fast reserves in UK ($\Delta t = 5$ min) and Nordel ($\Delta t = 15$ min)

Non-spinning reserves, full power in

1 - 5 minutes

5 - 10 minutes

Diesel engines and

hydro turbines

Gas engines and

aero-derivative GT

10 - 15 minutes Industrial gas

turbines

60 - 120 minutes Gast turbine

combined cycles

Steam turbine

plants

2 - 12 hours

Dimensioning of spining and non-spinning reserves

Spin reserve + nonspin reserve > Lc

Spinning and non-spinning reserves shall compensate the largest contingency (Lc) in a system

Or 5 -7 % of load responsibility (California)

Wind power forecasting errors and need for reserves

Power plant alternatives for non-spinning reserves

How to compensate 800 MW drop of wind power

Supplemental reserves

- Dimensioning criteria
 - $P > \frac{1}{2}$ x second contingency

Supplemental reserves

- Thirty minute reserves
 - New England, New York
 - ½ x second contingency loss
- Sixty minute reserves
 - California
 - ½ x second contigency loss

Slow reserves Purpose

Slow reserves, continued

- Used in Nordel countries, which have no capacity oblications (Δt = 1 - 12 h) and very high winter peak load
 - 2000 MW (7 % of peak load) in Sweden
 - 600 MW (4 % of peak load) in Finland

Reactive reserves

Purpose of reactive reserves

- Compensate reactive losses in the transmission network
- Generate reactive power to electrical motors and other consumers

Single line diagram of a power line

Ua, Ub = voltages in the power lineX = reactive load of power lineC = capacitance

Near maximum load

Maximum capacity of power line (=stability limit)

If $\delta = 90^{\circ}$, $\sin \delta = 1$

Then P = Pmax

Stability limit is reached

Reactive power generation

Reactive power generation, continued

- Generator voltage control system (AVR) increases excitation current in rotor
- Generator voltage will rise and reactive power will be generated

Reactive power generation

Reactive reserve generation

- A Generator stability line
- B Maximum mechanical output of engine
- C Maximum current of generator
- E Mimimum continuous mechanical output of engine

Apparent power (S)

where

P = resistive power (MW)

Q = reactive power (MVar)

Determines the capacity of a generator in MVA

Recommendations

- Build power plants near consumption centers to avoid consumption of reactive reserves
- Local power plants can generate the reactive power consumed by the appliances

Black start reserves

Black start reserves Purpose

- To energize power system after blackout
- To generate power for local needs when the power system is out of operation

Black start reserves Energize power lines

Black start generator (G) will energize power line after the switch has been closed

Capacitors (C/2) will consume the most of the current

Restoration approach

 Start local generators first and energize local power lines

Top down

Use power lines to energize local generators

Starting of emergency motors

Induction motors consume reactive power (Xm) at the starting phase.

Starting current is typically $5 - 6 \times I_n$

Black start generators

- Small diesel engines
 - Started by batteries
- Large diesel or gas engines
 - Started using pressurised air
- Gas turbines
 - Started by diesel engines

For details see reference text book "Planning of Optimal Power Systems"

Author:

Asko Vuorinen

Publisher:

Ekoenergo Oy

Printed:

2008 in Finland

Orders click:

